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ABSTRACT

We have calculated the cross-section for photo-disintegration of the

deuteron by a high energy photon. The interaction between the photon and

the nucleons was expressed as

— .-a-’ , S,
= -[r e s - |y ‘w>d3;-§;;. ED O3 08 (@
where .
“*E}f{g PERMEAA ST I E>dx+%733“1:ﬂfigjzk’:?(“i"k"ﬁ“j)d%?ﬁ"

stands for further electric and magnetic octupole and higher multipole inter-
actions as far as not included already with the dipole and quadrupole inter-
actions in the first two terms of the right hand side of eq.(a) Compare
eq.(39a)). ¢ and‘;, are total charge and current density, but for explicit
calculations the meson charge ("exchange charge") was neglected and

= o P “i:‘ -* (13)

wias used. This approximation, satisfactory at energies below 50 Mev is

not quite so good at the energies?» 90 Mev that were considered in this
thesis.
—~y
.'g are the coordinatesmeasured from the center of gravity of the deutercn.
E (R) andiﬁkg) stand for the electric and magnetic field at distance § from
— . . . 3z 3
this center of gravity, A for the vector point at this point  d”x = d fi
—
¥ is the magnetization of the deuteron at this point; it is defined by
- > '
M =TT (35)
-~
where I will include meson currents. As we have insufricient information

on the properties of meson, eq.(35) was for practiczl calculation replaced

by (compare eq.{9} )

j: r\;*ﬂ:_i_ ( \1"[} )LP \- t_?./A“)g- E ('6-)

~
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the integral of which is experimentally known to be a good approximation
for the magnetic dipole moment of the deuteron. As only central forces

were tai{en into account for the interaction of the nucleons through the

meson field, this approximation would be sufficient. However there are

no reasons for believing that the magnetic quadrupole interactions cal-

culated for (b) should be correct,

The term %t"’ in (a) can be omitted as only first order perturba-
tion theory was used in calculating the cross-sections., The central forces
between the nucleons were taken as a 50-50 mixture of Majorana forces and
of ordinary forces as proposed by Christian and Hart (compare eq.(lld)

U= %{11\(-1)5% v(t) (c)
There is little reason to believe that this potential is correct, and for
the ground state of the deuteron, where it was also used, its lack of
spin dependence is definitely in disagreément (as eq.(€) would give the
same binding for a ‘S state as for the BSstate). However no better inter-
action potential for the high energy region is known today. For V(¥ ) a
squére well of depth Vo and effective range Y o Was taken (see eq.(L9) ).

The cross-section may be divided into an electric cross-section v’
for transition with4™=9, if the photon enters along the 2-axis, and a
magnetic cross-section CTMfor transitions witha"=1) in this case. The
expansion in multipole contributions én which the calculations are based,
do not converge quite so good at energies >90 Mev for the photon. This is
the reg8on why different approximationsmade for transitions to findlstates
with (=0 , or = 1 gave substantially different numerical results. The

formulas obtained for the cross-sections are:
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q‘E for &< final state with Q=1

P |

2 [ 2 oo « 2y (ﬂ—)
| LIS A ' ur Y
| Ty 1T R EE{' k”I L IFp (r) —5—— (r)dr) (22)
t .
| . 2 oo 2
% Oy = %r_ ﬁ%- r%kl& go rFﬂ(r) Fi(r)dr‘ (23)
E Q‘E for final state with Q =2

2

2 oS -
‘ o= & e kﬁt&‘ oF.. JL r
> R=o T30 53 3 5 ‘ . 12(1‘) 3 i) (k3) F;(r) dr (26)
: —— " 2
¢ e Tl )7 [ ) e e (28)
S = : N ; .
a = 120 He Efk vk | TRot 2 '
M
T for final state with }=0:
i
E TM: 0 (compare eq.(10) )
for final state with Q= 1 (hoping the best for the choice eq.(b)for M):
2 2 2 2
G .= (E - £
75 G2) (p tpe T3MAI T (29)

enerdy
fick = the incident pho‘bon/\in the center of gravity system,

Here E’
E

the final energy of the nucleons in the center of gravity

system.

=
1

= nucleon msss.

~
|

: 3
= radius of spherical volume V = =3 rt » in which

£3 R Lol R SR AR e S

we normalized the final spatial wave function

of the disintegrated deuteron,

>, _ Pl Y. | :
v\ﬂ(r)_ > Yy'm(@,np), (L6)

while the spatial wave function of the deuteron in its ground state was

4 (¥y= L B

3 (mr)!’:. Y - !
‘ ikae - ik cos . %
'TR_l and “}_2 were found expanding/\expression e § Ze § cose appearing

in the matrix element by

2o s

'n ‘L. b

w0 (2£+1)J (kg)?y (cos )
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and negiecsing 1 ith {22, T, T, ¢ 0 i
2nd neclecoing terms mthg&,& & g’ "na’’mg were calculated using

k§ *

a Taylor -expansion for et and using only the first two terms (1+2 b3 @),
pesmerical results can be found below eq.(28) and in section 3. Our eq.
(29) is different from the formula published by Marshall and Guth. A1l
cross—sections were calculated in the center of gravity system of photon
and deuteron. The energy of the photon in the laboratory system is
Y EY 1 shM c + B>~ E
\ y “r°?

which will be about 9% more than T for E ~A-150 lev.
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1. INTRODUCTION

Since the high energy machine has been well developed, high energy
photo—disintegration of nuclei is more interesting than ever before. But
the present knowledge of the neutron-proton interaction at high energies
is not quite clear, From low energy neutron-proton scattering one can
obtain the effective range of the neutron-proton interactionl’z, but little
information about the shape and exchange character of the potential, High
energy neutron-proton scattering should yield information concernhing the

. raight give a_checkon, B

shape of the potential andﬁits exchange character. If we assume that
there are only four types of interactions, i.e. the ordinary force,
Majorana force, Bartlet force and Heisenkerg force, we need four parameters
to characterize the exchange character of the potential. This presumes
that the particles interact by central. forces only khat do not depend on
velocity, which is dcuvtful at very high energies. Theoretical interpre-—
tation of the data available at present by Christian and Hart3 indicates
that if one arbitrarily neglects Bartlet and Heisenberg forces, then the
exchange character of the potential seems best represented by a mixture of
50 percent of ordinary force and 50 percent of Majorana force, or the per-
centage of Majorana force seems to be somewhat higher than‘SO percent, but
the experimental evidence is not complete enough’to assign a definite value,
So Christian and Hart only determined two parameters. Since the experi-
mental results are so inaccurate, we cannot hope for more parameters than
these determined by them. From the theoretical point of view, these re-
sults are quite arbitrary, becauss there is no sound theoretical basis why
the exchange character of the nuclear potential should be a mixture of

ordinary force and Majorana force only. In the following we want to derive
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what Christian and Hart's interaction weould

predict for hich energy photo-
disintegr;tion of the deuteron. If this would definitely not agree with
experimental results on photodisintegration, we would have evidence thatl
Christian and Hart's assumption has been all too simple,

It has been shown by Mpller and Rosenfeldh that the contributions of
virtual mesons to the electric dipole moment and electric quadrupole moment
of the two-nucleon system are zero to order Viucleon/c. This makes it
possible to calculate the cross-section for photo-electric disintegration
of the deuteron at low energies entirely in terms of the interaction po-
tentials between neutron and proton in triplet states of various orbital
angular momenta. Guth and M’arshall5 pointed out that the contributions of
the virtual mesons for energies below 150 Mev can be neglectedgxéglieve that
multipoles other than dipole and quadrupole begin to become important for
energies higher than 150 Mev;) For the photo-magnetic effect, the situation
is different. Iﬁx%& true that the magnetic exchange moment (that is, the
magnetic moment due to the currents of virtual mesons in the deuteron,)
vanishes for any stationary state of the deuteron,dﬁmt*the exchange moments
of H> and He3 amount to about six percent.6 Pais7 pointed out that the
exchange currents are likely to contribute to the photomagnetic cross-
section. Although his original estimate of the magnitude of this contribu-
tion on the basis of Mpller and Rosenfeld's mixed theory was much too 1arge§
thgxgagnitude of this contribution is still unknown. The same .~
holds for magnetic quadrupole transitions.

In the present paper the cross-sections for the electric dipole and
quadrupole transition and magnetic quadrupole transitions have been calcu~

lated by using a square well potential for two different effective ranges:

1.56 x 10" Scm. and 1.74 x 1073cn,  We obtain these results following
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Guth and Marshall's point of view, but 2alsc used svmewhat different
expressions for the cross-sections. These differences are due to different
vays ofvexpanding the factor exp (iﬁ:;) represenﬁ@phe photon wave in the
matrix eiement. The fact that this has an appreciable influence on the
cross—-sections for the electric "dipole" transition shows that the expansion
in multipole contributions used by Guth and Marshall cannot really be assum-
ed to converge rapidly at energies around 100 Mev as assumed by these authors,
Furthermore, we think that there is no sound theoretical basis to ignore the
contributions of the virtual mesons at these energies. In the next section,
we shall give a detailed discussion of these points. Section 3 contains
all thc results we obtained, and the graphs which show the variation of the
cross-sections for different energies and for two different effective ranges
of the square well potentials., Section L presents the mathematical appendix
which gives the derivations of all the important formulas appearing in the
text,

All calculations were made by taking 2,237 Mev as the binding energy
of the deuteron, and a 50-50 mixture of ordinary and Majorana forces is as=

sumed for both triplet and singlet states of the deuteron.
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2. .DETATLED DISCUSSION
The photodisintegration of the deuteron can be described as a transi-

tion of-a two-n&ucleon systen ¢f charge e, under absorption of a photon,
from a bound state (the deuteron in its ground state) to a state in the
continuum of the energy spectrum ("disintegrated deuteron" state). The pro-
bability per second for this transition, for a system with one deuteron and
one photon initially within a volume V, is calculated by means of the welle
known equation

w=2lp @) |wf? (1)
where W is the coupling between nucleons and photons, treated as a small
perturbation. If more properly we consider the deuteron as a system con-
sisting of two nucleons and a fluctuating number of virtual mesons, then
W should be the coupling of nucleons and mesons with photens; This coupling

W m— - i

may be written as

* 5
w=-§1. F Ot (2)

- ->
where E?is the sum of the nucleon current I, 4 the meson current s and

Y

the terms Ieg which are products of a nucleon wave function, a conjugate
L3 - * . ’
nucleon wave function, a meson wave function, and constants, and A is the

transverse photon field. If e denotes the elementary charge, and g the
~»

meson~nucleon coupling constant, the Ieg contains constants e x go If in

- -l

I and Ieg we substitute for the meson fields, the solutions of the static
- »
equations of the meson field given by M{ller and Rosenfeld, then Ip* Ieg
represents what is often called the "exchange current”" of the nucleonic
system,
. R .
In W we may expand the photon field A (x) in transverse plane wave§

R o )

-
proportional to elk'x where k is the propagation vector of the photon field.
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-

The current I, in particular, iits matrix element corresponding to a transi-
tion of the nucleons from the bound state to the disintegrated state, will
be negiigible for distances r between the nucleons which are larger than
the sizé of the deuteron (the range of the wave function of the deuteron
Le3 x lO’chm. which is considerably meore than the effective range of
nuclear forces, which is only around 1.6 x 10"130111.). Ir .f{’ is the radius
vector of the center of gravity of the deuteron and? the relative coordinate

-ty 5 . iy -
of the two nucleons, and we use R and r instead of the positions X3 and X,

- g

of the two nucleons as our spatial varjables, then I comes multiplied in
Re T > g

W by factors ﬂ.lk°R e ikeZ . The last fetormey be expanded in powers of

(-l:. ;- ), which corresponds to an expansion of W in multipole contributionse

Becd
We may also expand o tkeZ in terms of Bessel functions of half integral

T
order of argument (k% ) and Legendre polynomials in cos @, if e E(_is the angle

iy

- »> . . . wp giked .
between k and r o Such expansion will converge rapidly if & is used
i

iy
only in a region where (k . 5) remains small, that is, if the size of the

deuteron of 4.3 x 10_130111. is small compared with the wave length = 27W/k

of the photon., We find

Energy of photon Wave leEEth of photon Value of kr/2 where |
in Mev, in x107“cm., is deuteron size
] tdor g2c)
9 13.5 0,10
23 Sel 025
46 2.7 0.50
92 1.35 1.00
R

=

From this it is obvious that tlk°§ can be considered approximately equal tol
ik.r/? <l = .1 -

(l& ..1‘ 27, K . r/235 ) only -f.o§ photonsof energy lower than

. r
L1 -
23 Mev; that a linear expansion of nlk‘Q(_: 1+ ik.7 ) is a reasonable
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approximation only (for k r/240.50, that is) for photonsof energy lower
than h6 Mev; that (for k r/2>»|, that is) for photonsof energy more than
92 Mev gven a quadraﬁ’oﬂ.e expansion (1¢ ik .-5; -,z!( K. —g )2) would be insuf-
ficient. In fact the expansionsare a little better than the above would
make us believe that, as for values of 8 # o, k r/2 will appear multiplied
by cos @ and the energy of the photon may be larger by a factor sec & for
ootaining the same value of (Ic’ . ?/2). Let us therefore say that the
limits of valadity for our expansions of e ﬁ: * ?/ 2 gg about twice as high
as calculated here. Yet, as electric and magnetic dipole transitions and
electric quadrupole transitionscorrespond only to the terms l*i‘fc. . g with
above expansion, we still cannot trust this to be sufficient approximation
at energies above 2 x U6 = 92 Mev, that is, in the energy region considered
in the present paper. The magnetic quadrupole contribution cannot be cale—
culated without knowing the distribution of the magnetization of the deuteron
over space. As we do not trust the magnetic moment as calculated by meson
theory and on the other hand we do not have experiments at our d isposal
givihg the magnetic quadrupole moment of the deuteron, we have to content
ourselves at present in the high energy region) 90 Mev with an insufficient
approximation. Nevertheless, we calculated the cross-section for magnetic
quadrupole transition by following Guth and Marshall's point of view merely
for the sake of comparison with their results,

As we consider only transition with conservation of energy, we may re-
place W by W+-g%( s where X is any quantity (since

E= 2 (H-xH)

and H has the same value before and after the transition), We may use this

possibility for changing W into-
W= - sﬁ'E(?) R - ) ¥ .8ty ?’j'jﬂi%@i E}IBJ? - %ig::ﬂ%{&p&o)*

# See section L for eq.(3) and for other important formulas appearing in the
following,
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7

where ?is the distance from the center of gravity of the nucleonz to the
point; ;ver which we integrate, and i, j, k run from 1 to 3, standing
for x, y, 2 components of the vectors > and the nabla ¥ stands for partial
differentiation with respect to x, y, or2. The last term is obviously
of the same dimension as the magnetic quadrupole contribution, and will
be left out of consideration, because we do not know anything definite

about the magnetic quadrupole moment. By Taylor!'s expansion, the third

term can be approximated by

LA ) &, @
if we neglect the higher order terms in the expansion (electric octupole
terms and so on, which may be of the order of magnitude of the magnetic
quadrupole or perhaps even less). In the above expression‘ﬁ? (0) and E(?)
stand for the electric field evaluated at the center of gravity of the
nucleons and the point ? respectively., The second term - j.h? . T‘? a3

stands for the magnetic effect as far as this is taken into account, and

is of the form

- Sﬁ’. W= - %jﬁ’ (3xD) 32 (5)
So finally, eq. (3) becomes |
= —%Sf?. T M- %yi’?. £(0)a’% -S'ﬁ’ Ko (6)

This expression includes the electric quadrupole contributions » @5 we will

show below,
We can consider the following transitioms of the nucleonic system,
O ®R=0—{ =0
(Im) @ =0)—x = 1)
(1ID) (@ = 0) == (% = 2)
(Iv) (R = 0)-—x(¢ * 3).

Here § stands for the quantun number for the angular momentumof the final
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state of the two nucleons. Transition (I) is possible by eq. (1) through

the last term in eq. (6) only. Tranmsition (II) is possible by eq. (1)
through the first two terms in eg. (6). Transition (III) is possible
through‘the first term in eg. (6). Transitions (II) and (III) are also
DOSbLOLe through the last term of eq. (6), buét&g do not know M as a function
of§ but we only know j~h % fram experiments on magnetic moments, these
contributions cannot be calculated (For the same reason we omitted the last
term 0% eq. (3) )o Transition (IV) are completely neglected for the same
reasons as given for the approximation made in eg. (L), although for our
energy range the contributions of higher order multipoles may be not quite
unimportant, Note that there are never simultaneous contributions for the
magnetic as well as the electric temms in eq. (6) to one and the same transi-

tion of the nucleonic system, because of the selection rule$.

-
For \SM dBJ? we may write

S%T = l«-t; p’* 1 Ett M N)?‘f dBJ?, (7)

where ?P is the quantized nucleonic wave function, M is the mass of the proton,

and teis the "isotopic spin" operator, of which the eigenvalue is taken to
be +*+1 for proton, and -1 for neutron, while,“P and M N are the experimental
magnetic moments of proton and neutron respectively. The matrix elements of

(7) are given by .
*i o 1t -
X% @21 (118 KT @ ] b, 2% (8)
whereyi and i ¢ are the initial and final two-particle wave functions of

’ >
the nucleonic system, and Xy and 3?2 are the position coordinates of the

two nucleons. If tentatively we take

"1 &
2 & (140 1 -
= 2%’*?" 2&'/*1&)&1

=L 2o K (9)

RPN ) |
(which may easily be wrong by the divergence of a dyadic ki_’__lv«T that by
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9

integration over space would not contribute to the total magnetic moment),
then the average square of the matrix element for the transition (I) is
; 2 ->
|48= o | i | 2= o>‘Av =((ﬂ=o‘-§ Fd3“|2=o>|2

= zgcfﬁ <$c> 1 2*"u2 /‘*f,"%}.(r)“ (®)d r,Z (10)

Here .I‘)ILS the relative coordinate of the two nucleons ,0- ck is the"angular
frequency'of the photon wave, and fick= E,..is the energy of the photon
(incident ¥ -ray) in the center—of-mass system, u; is the spatial wave
function for the ground state, and urg is that for the state of angular
momentum & , while V is the volume in which the photon wave and the nucleonic
system are enclosed. Furthermore, the symbol Ay means the average over the
two directions of circular polarizations and over the substates of the spin
of the initial state and sum over the substates of spin and isotopic spin
of the final state. Our result (10) vanishes, siﬁce ui(?) and ufo(?) » which
are two wave functions corresponding to two energies of the nucleonic system
differing by the energy of the absorbed photon, are omtlogonal to each other.
~ For the calculation of the matrix elements of the first term in eq. (6)

for the transitions (II) and (III), we expand the electric field of the inw
cident photon
> op sikor + W
= X 5 21!c ,e ox o
E=C ¥rwr (1) £ (ayge %p® ) (1)

Here, app and a’ltP are the annihilation and creation operators for the photon,

and the values k:and R of the label P denote left and right hand polarization,

according to

L
Wrm (e (122)
3R=V:§('§t-i'éf{) (12b)

) ,
where "e'i s '51{ and 3}3( = -];/k are three unit vectors along the x, y, and 2 axes.
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Turther we take for the matrix element of P

- T
fes = e{’* 2’ l* : )’f (13)

where we neglected the large exchange charge density, because of lack of

decisive experimental information of the type of meson interlaction between
the nucleons, Introducing?as the coordinate of the center of gravity

of the deuteron, and ? as the relative coordinate of the two nucleons

( .1? = ;2 - 3{1 )} as we did before, We find the average square of the matrix
element of the first two terms in eq. (6)

B2 _ 2¢fie 2|1 ap R ike
kvl = 28 2 |1fug @ F.F (ef

NTEETA

», 3»}2
t1) u AT W)

Here the symbol Av has the same meaning as before. Remembering that

> a3 . . ik B/2

k=k ey is taken along the 2 - direction, we can expand e by the

well-lmow% expansion

r _
ei'lz.'é' = Glky cos @ =J21k§_ ’:‘;:o’olll - l)]_nl 1 . ) P (oo 6 ) s
For a given value of , we need here only consider terms with £'= {2 1, be=
cause, for a given} H!WEB)’Z vanishes for X other than ﬂ =41, In fact
we need only consider 2 = 0 for transition (I) andl =1 for transition (II),
The terms with ﬂ, 22 would correspond to higher order multipoles. In order
to compare the expansion (15) with the expansion in multipoles by Taylor's
expansion of ei”i'?e ‘r’/ 2 s which would give the contributions of different mul-
tipoles to the cross=section from M*ller and Rosenfeld's or Guth and Mare

shall's point of view, we write out the explicit forms of Bessel functions

of first two half-integral orders

r 2 r
Jd (k5 ) = sin(ks
5 2 nk; 5 )
r 2 s:Ln
J_B_(ké'):"—la-—'_.r.kg_—cosk‘z').
2 2

2
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11
Then the first term with x( = 0 1in the expansion (15) becomes
- N (162)
' 6 T a0
and the second term with le- 1
icose[g -5 P ] (16b)

So we are led to conclusion that the matrix element of the first term in

eq. (6) wit_llx"': O and the matrix element of the second term in eq.(6)

with e i.i:' ;2" replaced by 1, which itself, corresponds to the contribution
of electric dipole transition from Guth and Msrshall's point of view, differ
by something of dimension of octupole contribution, if we ﬁeglect higher

order terms of k'xg‘- . 4As we find that

| Jo_ T _ _ the 23l T
I<i= 1\ §f3-§(3>d3?‘-°> =T E Lran <1‘)J”2‘% J1 (k%)Fi(r)dr{ an
- «h
and ‘(x = ll frg .E(O)d%'c‘iQ:o)'iv = ———V“ e ]3" !- rFp, (r) F. (r)dr, (18)

are substantially different, we see that higher order terms of kg are not
really smalle In egs. (17) and (18) Fi(r) is the radial wave function divid-
ed by r for the ground state;F

) {n

normalized in the spherical volume V of radius £, in which the photon wave

is that for the state of angular momentum f ,

and the nucleonic system are enclosed, as we have indicated before.

So here uy @) = F_‘l_é_rl Yoo (19a)
uﬂ(r‘) = 'F-f&(u) Yhom (19b)

Y%
Yim'—'{zf;l (&I'ﬁ‘ﬂ ?l (cos 6)1 "t (29e)

According to eq. (1L), the average square of the matrix element for the

transition (II) is
la:l(WEl f=0p| 2 = ( 1{4=1‘ [? (?)d})l 2—0)#(!-1‘?;.E(0)d3"[l=0>y e
T 3, g (r) —k‘[J%(l'r)F (r)dr*frFﬂ(r)F (r)d.x{Z (20)
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12
- The density of states of the final state of the system per unit energy is

- PE) = 5z ‘i = & (21)

where Ef is the final energy of the disintegrated deuteron, and £ is s again,
the radius of the sphere of volume V, in which the photon wave is enclosed.
and in vhich now the nucleon's wave function after the disintegration is

normalized¢ Then for transition (II), the cross-section is given by

r-l - 1;‘ gc% Fi‘l(r)(:"]l( g)F (r)dr*“\rFfl(r)F (I';dr}‘ (22) (22)

3 rerafe >qn.=.re o¢ enc

As we mentioned before that eq. (18) alone is the/\matrix element for the

electric dipole transition from Guth and Marshallt!'s point of view, we see

that the cross-section for electric dipole transition considered by Guth

and Marshall is
2 2
S | 2 MC ‘ﬁck
iz % 7 \Ej rFy (r) F, (r)ar (23)

The value of the cross-sections for qu-l and 0:1 for two effective ranges
1.56 x lO-'l3 cm. and 1,74 x 10-13cm. and for the energy of the incident
photon ranging from 100 Mev to 150 Mev will be given in Section 3.

For the transition (III), the average sduare of the matrix element of

the first two terms in eq. (6) is

famtete o [ Radezi> zlfr§i€<o>d3?ele=0>}|ifm
As the second term in the absolute square Vanlshes, this g:wes

_2\WE[1_O>I -Z"ﬁwaz‘ Sufz(r) é‘]‘f.i R CHEIEE ‘Av

- o, GF ~
L3 e 7y 08 meef

and the cross-section is then given by

2 6
Ef %k—l\& rFfa(r) ‘—k}; J% (2) Fi(r)dr( =)

(25)

""'_37«
*-r

a«leo
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If we want to compare the result (25) with the cross-section for the

electric quadrupole transition calculated by the method of M$ller and

' 9
Rosenfeld’ s we remark that they used for it the matrix element

-
- (Q.V =112 3P
Vg, = -3 | 3235 (vr) A (27)
where VB = (V, E)O stands for the value of V.E in the center of

gravity of the mucleonic system. In Section l, we show that this leads

to a result similar to the second member of eg., (25) but with eiﬂk”;/2
replaced by i?. -I; that*i_s‘;, the contribution of the second term of a
Taylor's expan31o*1 of e 1k % o (The first term, which is |, in the Taylor's
expansion of elk°2 does not contribute anything to the integr2l in the

seco_r.l,d member of eq. (25). Now in the last member of eg.(25) we expand
lk *2 according to the expansion (15), but neglect terms w:x_thf >2.

ol
That is, only the teru x = 1 need be taken into account. This means re-

k.2 by (16b), so that the difference between the result cal-

placing e
culated by using the last member of eq.(25) and the result obtained by the
%¢1ler and Rosenfeld method (which was used by Guth and Marshall for the

caleulation of the cross-section for electric quadrupole transitions using
exponential and Hulthen potentials) is something of the dimension of higher

multipole contributions. The cross—-section for the electric quadrupole

transition by the method of M1ler and Rosenfeld is then glven by

2
o-q = o= .ﬁc’ -rck J}‘ fz(r) F (r)dr (28)

In fact, we find for 'Ti___.“ and @ _, as calculated according to eqs (26)
he' S

and (28) for the effective range 1.56 x 10™13en, and for an energy of 100 Mev

for the incident )'- ray,

T =3 Ocmz.

1.68 x 10

L=2

and g

. 1.02 x 10~3%n2,
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These reeults show that higher order terms of k-g are not quite small. As
°i=2 is "small compared with the uncertainty caused by neglecting higher
order effects (comparing the results of O 4 with those ofoi=1 in Section 3),;
we did not take the trouble of further calculation of 0g =, for other energies
of the incident Y~-ray, or for another effective range. But we calculate O
for the two different ranges, i.e. 1,56 x 10™13cm. and 1.7l x lO—lBCm.,
and for the energy of the incident Y-ray ranging from 100 Mev to 150 Mev

Just for the sake of comparison with the results calculated by Guth and

Marshall for different kinds of potentials,

As we have stated before, the magnetic quadrupole contribution cannoti
be calculated, because we do not know the distribution of the magnetization
of the deuteron over space, that is, we do not lmowvl'«? as a function of?,
out we only know S‘I‘I d3.x’ from experiments on magnetic moments. Neverthelecs
if we still want to calculate the cross-section for magnetic quadrupole
transitions, we should note that the magnetic quadrupole terms in the matrix
element are only two—thirds of the contribution of the second term of a
Taylor expansion of e 03 in the expression i‘or.l?(z) in - Siis.lr (3) EEsd
as shown in section 4. (This is because there are also magnetic quadi'upole
contributions from the last term in ey. (3) ).

We have calculated the magnetic quadrupole cross-section (hoping the
best as for eq.(9)) for two different ranges, and for energles of the incident
}’-;ay?anglng from 100 Mev to 150 Mev. In how far this is exactly equiva-
lent to what Guth and Marshall have done for different kinds of potentials,

is not clear, as we have used the equation

3 [ g; §2k> Tk (o - S N)l‘ﬁf o (r)8 (r)dr‘
i} 1 2 -
=3 ﬁfz) (f‘p s '3"“!’/" ¥ s ) (29)
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where %r =“ck is the encrgy of the incident phonton, while Guth and
harshall found a factor 3 instead of ; in the last equation, and used
()AP t’V\ N ')./*‘,)'sN) instead of the expression (}‘\,21)‘\3 - %—}\f)*N) in our
equatione

The derivations of these expressions for the cross-sections will be

given in section l.
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3. NUMERICAL RESULTS AND GRAPHS
Table I gives the calculated values of the cross—sectionv‘g =1 for the electric
transiti§n (I[)f Table II gives the values of the cross~sections . d and 'q
for the eiectric dipole and quadrupole transitions calculated following
1$1ler and Rosenfeld's method which was used by Guth and Marshall for cal-
culating @ g and a'q by using exponential and Hulthen potentialse. Table IIT
gives the values of the cross-section qu for the magnetic quadrupole transi-
tion. The values given in Table III are listed here for the sake of compari-

son with Guth and Marshall's results, although their inclusion, according to

our previous discussion, does not have a sound theoretical basis,

Table I
O(erfecmvi, ra.nge) 1.56| E,, (energy of the incident -ray) 100 125 150
x 103 in Mev 0
Tyo x 1030cp? 58423 1042l 26.8L
v, x 103cn, 1.7 By, in Yev _2 100 125 150
Table IT
13 E, in Mev 200 125 150
v x 1083, 1.56 {4 x 103%x? LL.81 29.11 16,72
5y x 103%xn? 1,02 0.8y 0,61
Ey in Mev 100 125 150
v, x 10%3em. 1.7 |og x 10 cn 364lls 25,80 16,45
Ty X 100 cp? 0.91 0.65 0,55
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Table III
x 10+3cm. 1.56] By in Mev 100 125 150
g * 10302 0.83 0,85 . 0.71
13 E, in Mev 100 125 150
¥, x 10-7cm, 17| =y 0 2
q'fn% x 10°Ycm 0,68 0.76 0.70

As we can see from Tables I and II that the values of 0'2,____., and 0", are

d
substantially different, higher order teims of kg- are not quite negligible,
On the following two pages there are graphs showing these results.

Compare, however, the preceding section as to the comparison of T mg as cal-

culated by us and as calculated by Guth and Marshall.
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lond 2

o

40 80 120 160
Ea’ in Mevy F/gz

calculoled by Guth d Marshall using
Hullhen pelentis/ for Y=/ 74x 103 cm.

Ormg for Yo= 1563073 cm,
dmg for  Yo=174x10""3¢m.
T9 for  Yo=/1.56x0""3cm
% for .= 174x10"%cm
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Lo MATHEMATICAL APPENDIX
As m; have stated before, in this section we shall give derivations
of 211 the important formulas appearing in the text., We shall first con-
sider eqe(3). The perturbation used in our problem is
wwf?.i’@? , (30)
which is integrated over the current field. Here ? is the transverse part
of the vector potential of the photon field. We can write eq.(30) as
W ='l’i§‘inAj (vigj) a3 = n{‘g (Il sA "I'Aj?ili ) d3:'c’, (31)

h’
where§ has the same meaning as stated before. By the equation of continuity,

}-ff? ?=0,

we have W= ;LS.gJIlle,]dBX - —S P ( 3 .A) e

= j§JIlV1AJd3“"‘ - JJf(S.A)dBXf—jf(g 1) 7.

Since A is the transverse part, it follows from

= -%-‘3? (32)

where'g is the electric photon field, that

W= ‘% :‘rgf (§,X)d3>? -5? (.gé)d%?* ij J§311 1A3d %,
We can leave the first term out of consideration, since its matrix elements
are zero between two states with the same total energy (including the photon
energy) and, consequently, it does not give any contribution to the matrix
element of W considered in our first order perturbation. So, if for the sake

of simplicity, we Jjust still use the same notation W for the altered inter—

action operator, we can write

- i 27 J
W= -Sf(?.g(}.) )&Px + f’i LA W2 (33)
We shall now show that the second term stands partially for the magnetic
interaction
= 3
—SM _h> dax , (3L)
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-y
where §} is the magnetic photon field and vwhere we consider
- 3 1 -~
M=53xI (35)
as the "magnetization" of the deuteron.Indeed,

-3 .ad%‘?---\(;xz) @) o}
=-l¥’e§§l S (vA)d3"‘+§ ‘331 (v.4,)dx (36)

ittty

Subtracting eq.(36) from eq.(33) and the adding eq.(3li) to s both members

of the equation, we find

W= - Sv(x .E(z))dx -SM.hd %11' [ Ii*iilj) viAjd3§?, (37)

-

in which, by Vi},j = Sij and by integration by parts, the last term is equal to

: 31'3* j(}.i.s lI.)tA.d%? = -:ZL- %?-XHIkvk(gi};j)} (yiAj)d3:?

1jk

1
= ??1?&!3‘, @, L)@, Aj)d}’- % ’;LJ"I}' 3.3, RN yaoR,  (38a)

Again, using the equation of continuity, the first term becomes

% ?.3'151;3( ka) (V As )d3 lZlytf gs(leJ)dB*

=43 “’Jf $:35 038900 - L ’“"f ARAIE R (360)

Substituting eqs.(38a) and (38b) together with eq. (32) into eq. (37), and
again, leaving out of consideration the one but last term in (38b) by the
same argument as before, we get, finally, .
2 bed . 3

W= - gﬁ.E(?)dB?' - Xﬁ. PRtz ?_?Xegigj (ViEJ-)dBD? - 22"11'3'1%_‘313311:@ KViky)dX

which is eq. (3) in section 2,
* K3 a

In eq.(l4) (in section 2) we introduced E(0), which leads to eq.(6), in

which all electric guadrupole terms were taken together. In eq.(3) they

1l
appear partially in -jrf.‘é‘(i’)d% and partially in 35 i’?Sﬁng(V iEj)dBS'c'.
~/
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Going a term further in the expansion, we could have written

:i’ngiEi(O)dB? = fjf SiEi(‘f)d? - !.“.-Sff. 3.(ViE.)d3?:"

3 E?Ej”f @ Vs R ... (9)

Thence we find W given by

r
W= - %Tiv?sigi(ﬁd%?% _‘ f3 B, (0)a°% %{g’f{-‘ Si'.‘»j}k(vivjEk)dB?
-f}?&? DT - 2 3 S? LA NS (390)

octupole and magqnetic ;

which gives eq.(6) when we neglect the electric Aquadrupole terms, Eg.(39b)
centains magnetic quadrupole contributions from both last two terms. In
order to teke this contribution together, we proceed by a similar kind of
reasoning as used in eq. (3%9a) for the electric dipole term, where we took
together the electric quadrupole contributions by comparing jﬁ'E(-SdB? with
Sf!’E(O)d Here, we consider
Sﬁ' T(0)a3% =SEI° TR SM.1§ VRSP,
- 3 * ,
M- H('i')d X - H ijk S(§k1j -Ejzk) A (vaJ- v Ak)d3:’—a(39c)
it BT - l%ﬁ?-gklj (V7305882 ¥ 1 kﬁs T (MVihs) g3

Mminug

The first and the third terms here are Justf\the last two terms of eq. (39b) »S0

that we also write

_ zjﬁm&@; (P85, w07

j ) (O)d - 1ka.§ SkI (vkleJ)d X*.o- (39d)
We may also take for W a kind of an average calculated as
2 w(398) *3, W (394)
(3)% E; (0) .;
"r” 2 B % H 13:‘[‘?; §k (" < ”

1]‘31

- z?ﬁi-?(c) eSS “"5(2515311{*! 3,I) (9:4,)06%.. .. (39)

We shall now show that the last sum in eq. (3%9e) contains only octupole and
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higher multipole terms. For this purpose, we write
1
‘{Jﬁx’ﬁ 25 5 5k +§i§k1: 3) F344 )a’%

=+2%5 kj(§l,31k'!,33k11+3 k31 13) (T, ¥ Aa)d3"

1
g1
+%’ g' 1S{Vé§i§j§k)} IQ(v kviAj)dB? (395)

Integrating this by parts over xg4 gives

- % %}?{ S{éls‘]}k (V’I!) (’kviAj )"'Si;j;klg (Vi'kVR Aj)} d33? (39g)

.
Now using %U‘Rln = - Ef—, and separating a term which is pure time cerivative,

we find for this

1 d 3 NS ‘1 pAR A g
&= ?;]:k ngisjgk Wk'iﬁ-j)dBX - Exijk i, §§k(’ El)dB"

_Elef.s.ggkIQ (9,9 4y) X

. %i?ﬂ&f?}}k et i (Y @) o2
- I S?. 3580y (9%, %4y) X (3%h)

Thence, omitting the time derivative again for W, we find, by subtracting

eqs (39h) for the last sum in (39e), , /,P__;;?s‘
= - ﬁ' E(f)-& 3(0)(13;}' - gﬁ mu% +H(O)*13k3r§ 3 } lo.0, £)a¥?

i 1355 kIg (vivka_Aj) d3;<‘+---,(39i)

where, for the sake of simplicity the notation W is still used after omitting

the time derivative term. Here the sum over i, j, k is of dimension of the
electric octupole interaction, while the sum over i, j, k, R is of the

dimension of the magnetic octupole interaction. Thence, including only up
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to electric and magnetic quadrupole terms, we find

REERTER (393)

with W = -fﬁ.@%_%@). e | (39%)
W = _s*ﬁ.____z?!(‘i;f"}?(o)d%? (390)

Eq..(391<) showsthal the electric quadrupole term is only half the contribu-
tion from the second term in the Taylor's expansion for eik'§ in g(?)
appearing in —ng.‘%( ?)dBJ? > while (39§) shows that the magnetic quadru—
pole term is only two-fbirds of the contribution from the second term in
the expansion fof ei‘ig'z in .I?(f) in = S'Iz R .}?( 3)d3}?.

In order to derive the remaining important equations, we first find
the wave functions of the ground sltate of the deuteron and of the disin-
tegrated state of the deuteron after the absorption of the photon. On as-
suming the 50-50 mixture of ordinary and Majorana forces, the Hamiltonian

of the two nucleons is then given by

-
=Ll m2, 192 2 >al _ wes 18T
H=oPiem Pyt V0o "1"2'[1 2 s S

in which the subscripts 1 and 2 referred to the two nucleons, i.e. proton
and neutron, respectively, and?, T are the "spin" and "isotopic spin®
operators. Let @ be a one particle "spint coordinate s which tekes™ the
values ¥1 and -1, and let T be the "isotopic spin" coordinate, which takes
the value +1 for a proton state and -1 for a neutron states. Then the

stationary state wave equation is

A 2 .
CAAE v ¥ <2,‘£:~.v.m;vt..w*v<‘£2-‘£l>%[~lmm;mmmw]

= Em{’(%i’,; % 933 G.T) (L)
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P .
Y=x _x
~ ~-» - > .
and oM, =M MR =M% +X,), (L2v)
2 2
then _THo_y? _E 2. g2 % y° (L2c)
2K 1 M 2 2lc R 2/« v

where }l= I.~E/ 2 is the reduced mass. We now attempt to separate the wave equa-
-ty - . —
tion by tald_ngi(\( 1,¥5; G“l,o'e;tltz) as the product of a function of R and

-
a function of r; Fl:v2;t1t2

. - - -
writing i (¥ 1»7‘ 23¢1,¢2 3t1t’2) = U(R) ‘i’ (?} 0“1,0'2;1'1,‘(; 2).

2 2., > ~» ”
Then we get - fl_v =
5 Vg Y (R) = E.U(R) »  (Lla)
and - %LV!’ ‘P( 0,500+ V(“?)é'[’*’(?;"u@z;ﬁ,h) o QLA 2"'»"\)]
= (Ep B Y(}9,9,, 7,70 (L1b)

in which E, is the kinetic energy due to the motion of the nucleonic systeme
Let F be the energy of the system aside from this kinetic energy Eys ieCe
E = Eggt~ Bge Then eq.(Llb) becomes
= B (T st ) (lc)

because A= ¥/2. According to Pauli's exclusion principle, the wave function
must;eantisymnetric with respect to the interchange of all coordinates of the
two nucleons: i.e.

Y (V5 0,000 = - (¥ 55 T, (132)
But we know that the wave function has the parity 1 s where ﬁ is the quantum
nunber for the angular momentum; i.e.

YT o) = (O o s, (130)

Substituting eqs.(43a) and (L3b) into eg. (Llc), we find

2 -
~ LY @ o ms e (-U“J T(NHT; &5 )= 4 (F w.osnm) (1)
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Let us write the wave function in the form
- - — 2 m
Y@ omn) =@ s LT (), (L)

where S and m, are the quantum numbers for the total spin of the two nucleons

and for its component along the 2 ~direction, and T and mT the corresponding
quantum numbers for the isotopic spin. For the symmetric triplet state
S=1,m_ =-1,0, 1 and

X,
X:

(1) « (2)

Lo
' ﬁ[ @ Ex@p (1):[
=g @R

and for antisymmetric singlet state, S = 0, mg = 0 and

=L g @ -] .
v2

n

Similar equations hold for T"%* . We can now easily see that eqe (l1d) becomes
T "

2 . |
_%v,zu(?)# % Il‘\' (-1)"] V(M u (M ZEu® . (Ls)

in which we have replaced V(¥) by V(¥), because we only consider the central
field. This is the equation for determining the spatial wave function. If
ve separate the wave function into radial and angular parts, we get the solu-

tion in the usual way, i.ee.

NOERPLTRNTED (16)
Substituting eq.(L6) back into eq.(L5), we then arrive at the well-known
equation
g—i%{ Lle-%ar @Y ve) - »’f-%i‘)iF =0 (L7)

Now we are going to find the spatial wave functions of the initial and

phtki

final states of the deuteron. Let its initial state be the groundA; l.e. the

state. Then 9= 0 in the initial state,

= F( ) =1 i
snd U\i(}‘) 'JTT“YM G : gr) ?
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and, consequently, ea. (i7) becomes

4°F.

S LR OB (16)
Let the depth and width (i.e, the effective range) of the square well

potential be V  and Y, respectively. Then

v(r) =] Yo Y<Ye (L9)
1 (o] T Y,

With E = -W,, where W 020 is the binding energy of the deuteron in its
(niide and outside
ground state s eq.(L8) becones’ ~the potential well

a%Fy , M
Ez’-i‘ 7z (Vo = Wo)Fy Y<Y, (50a)
By M
- =2 WoF = 0 Y>Y, (50b)

¢ must be continuous and bounded and have a continuous derivative every-
where. Therefore, F; must have the same contimuity condition, must go to
zero at Y= 0, and must not diverge faster than Yas reo, To satisfy the

conditions at origin and infinity the solution of egs.(50a) and (50b) must be

Fi = A; sin &, ¥ Y <Y, (51a)
Fy = B Q""‘lY TSV, (51b)

vwhere (Ki = S M(Vo-W,) /A °<i = J_BEW—;/H (53)

* Note that the use of Christian and Hartis spin independent mixture
of ordinary and Majorana forces leads here to the same binding energy in
'S state as in the S state s contrary to the experimental evidence, This is
one of the reasons why Christian and Hart's assumption cannot be regarded

as well based., See section l.
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in wnich the subscript i indicates the quantities for the initial state.

Since F; must be continuous everywhers, applying this at r= Yo gives

A; sinf\;Y,= By & iz, (5k4a)

Furthermore, applying the condition of normalization, we get
y oo o0
2 z*..f 2 Y 2 2
, = A . Y Y= A - + 3
1 j\ 1( )d | F{ (r)dr L Rody LP‘_ dr
-sz M "
=j Ay sinz&;ro{\r +Y 5.2 g% g
¢ - % L
Integrating out gives
2
2 Y _ A 2 1 ,=2dir, -
A, —-?smz&.vw, 1 o_’ (5Lb)
i 2 i 107 7g
& 2d;
From equations (5h), we can determine A, and B; for a normalized spatial
wave function “i(?).

the
For/\spatial wave function of the final state, we must solve the general

equation (47) with V(Y) given by eq.(49), ie.e. we must solve the equation

»

2 i

g—rF W %{Eﬂ % (1% (-1)Q)vo]- Q_ig"ﬂ}b*ﬂ =0 Y (55a)
2 t

%ﬂ‘i}éz. Ep - 2(—3%}—)-} Feg =0 VoY, (55b)

FfQ must satisfy the same continuity conditions as Fy doess To satisfy the

conditions at zero and infinity, we get the well-known solution

1
ka = Af? r2 Jﬁ{% ( &ff) Y<Y, (56&)
Ffi = r§ CfQ JQf% (d-fY‘)-f Df,Q J_*%_ (olf'r) Y >Y, (56‘0)
{ 3
in which hy= (EfEr 3 QDY) v ] (57a)

°§~=J—IE;/H (57b)
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Applying the cenditions of continuity and continuous derivative at

Y=Y gives Af-ﬁ Ji‘t%— (&fl.ro) =C fjJﬂ*]i_ (d\f TO ) +D fRJ-f-]Z“. (O(fro) . (583)

Aeg ¥eg 9, 3 (KW= © oty JQ’*% &%) 4 D fifo_’,_% (g Ty ), (58b)

in which the prime means the differentiation of the Bessel function with
respect to its argument.
To find the normalization condition, we make use of the following

asymptotic forms of the Bessel functions as r oo

> .
Jﬂf% (e ) }{“dfv sin (Xer- .}g)

= (‘l)Q
\U

2 sin (& N 1)
nav Y=

J"X"% (o fr)-——)d"&ir ccs (O(frt-lzjz)

So for large Y.

F fl—')rjz_-\‘;a%:“ [C il(-l)R sin (defélQ)+ D £qcos (&fY)r -;—‘-,Q )N}

\
Introducing é\ suchi that

X _lL 2.2 . ¢ - 2 2
(-1) Cfi =y Csp ¥ Dygsin o D 2= | Ceg t Dgp cosg\
A\
gives FfP f,::,!-—% Cf% 4 Df% cos (o( Y4 -—f %)

Since the final state is a state from the continucus spectrum, the wave
function is not quadratically integrable. So we normalize it in a sphere

of large radiusof. The condition of normalization is

Th N % i 2
1= So i@ &F[’m Yy, sin6 d® L Fﬂ,é_ (r)dy

e
xﬁ?;(cf% De} ) J (ot =5 0-8)ar .

o
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Integrating out, we find

&

1 -2 2 1 2 2 :
ﬁa-f— (Cfﬁ" Deg )'f+2tr_o(f2 (Cf,(+ Dfl ) sin 2 (o(fT‘+-l2J-‘—g) = ‘
¢

Since we can choose d{so large that the second term in the left hand side
can be neglected in comparison with the first, we are then led to the fol-

lowing condition of normalization
2 2 T

Cpp + Dey = _Cft‘ (584)
Eqs. (58) determine the three constants AfY’ Cfﬂ and DfR for a wave function
normalized in a sphere of large radius gf « We must notice that this spheri-
cal volume is the same volume V in which we enclosed the photon field, as we
have already stated in the text.

. Now we have all the equations necessary for obtaining the initial and
final spatial wave functions4 (?). Wie can then consider the matrix element
of W given by eaw (39 j,k,1) for the transition from the ground state of
the deuteron to its disintegrated state. Remembering that the electric
field of Y =raysis given by eq.(1l) and the magnetic field is given by

> 1LY m{“ >0

o L >
i HF gl T, (59)

k x& ] (ak@ ta, e
we find from egs. (39 j,k,l) the matrix element of W given by o
4 * . ; . S T Ay AR Y \
Wl > <ngl >*<_f|wy|l >«?u\¢1§ {iw“i;"(;»;“;q-‘ g-;;z,,raij.g_:_ﬁ[ 'Zz.ﬁ.)l(grxiog )J‘P;ﬁ. 390,03 f‘)dk&’

-:leER; ,-,f.,zoz[ ,(4: ,P,_am)ur.m*f})uﬂa EDJr@nam; t.,t.)dﬁ?c\};z%
(60)

Here <tlwEl: >“\‘§§—:wﬁ{f [T G,Tl)z ig‘f—":(‘g § ) (qlp :??)] i(:’,’.‘i‘,-,’q,w‘;;r,,r,)a\%ﬁs’(éla)
SRR,

.lt 83 ‘ 'J'T
NS SRES N | R naz IR PR CRLS TS T

vhere 2} = Xa' ~ R (61c)
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iwow we separate the wave functions of the nucleonic system into spatial,

spirt and isotopic spin parts, i.e.

~H = L V"‘T
T AR n) 21, (R0 (iam) Sy (e (62)

! ’
, P . T A »
Tr (505, 0,7) 28, (R om) § () (620)

Then we can see that the first integral does not vanish only when

om_ = ms’ ~m =0 (63a)

while the second does not vanish only when

-
fmg = nl -mg =1l (63p)
-
if we assume that k is directed along 2 - axis. As eqs. (63a) and (63b)

cannot be true simultaneously, we find that for every final state g;at least

one cf the operators WE and Wm has ‘& vanishing matrix element. We are

thus led to the conclusion that

[Celwl o | & = [<a [ o] ]9

where the meaning of the symbol Av has been clearly stated before. So these

12w =\<fl V‘Elj‘)liv" 'GIV'Mli>‘ iv, (6ls)

selection rules enable us to calculate the cross-sections for electric and
magnetic effects separately, as pointed out in the text, since there are
nc cross terms present in the absolute square of (i"W[i> .
From eq,(63) and the selection rules for WE
as=e Qw"r:i 0 triplet
it is seen that for electric transition i’f must again be a.k’géte as far

as its¢ - dependence concerned, while, like I i it must again be a state with
!
Ty =0
2s far as its dependence on tl and 132. Thence, by Pauli's principle, Qf

-5 -y
should be even in X, - xl , and X should be even, if ol = 0, while for similar
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reasons Q should be odd, if T:/= 1. In the former case, the matrix elements
<‘§* (A >a.re easily seen to vanish. In the second case, (I LT 3°>‘

(KT*J T. 2 J ) while in this case the matrix elements of 1sotoplc “ﬁltrlces
venish. Thence, if we skip the fector{ 3™, Ty 3 in W® in the latter

case (as its absolute squal is equal to 1 anyhow), we can reduce(f)WE'i> to

| =

A (1) = - ﬂ? NECR T 'E’{}s‘;%’(eiﬁé‘ﬂ)i‘ﬁl{eikx‘q)

f
T, (DRI o, (652

/
where the plus signs stands fer T = 0, m; =0, Q=" even, and the minus

sign for T =1, m , =0, Q- odde For the magnetic matrix element, we find
P> FE .
SNy Sc*fjg ARSI e Lsgczﬁ?‘ L eyt
- TR ;I‘-i’ gk (65b)
T @ et [JER G gmas

the
in whlchAé Sare given by

L (bpep) e ¥ e mlzor
=1
1 i 3
5 P+ Mp) for‘l"=0‘%=03
Avy'm'.f : Pp M T (662)
B 5 (}AN-—)AF) for T =1, ";,‘.= 0 .
' A =2
: | ! 0)
%_- ( Pyt PR) for M = 0, ™= 0§
0 otherwise
thﬁ/
and{\‘ 5 are tabulated as fcllows:
P=1 P =R
=1 j=2 vt j=1 j=2
: o8 = SMSSMS . S8 W § ™ 2 IQN_‘S“‘;S"_\J ' SKSN_“SM
70,1 1,0 152 ]S ™sf1,11,0 3|5 ™{1,1 2,0 1,-1| S Wi 10 41 (66)
1, 1} 0 -ik O© l,1{ 0 -ik 0*y1, 1t 0O O O} 1, X100 O Of
l,00 0 0 -ikx |1,0{ O O =-ik{1, 0} ik O O} 1, 0|ik O O

0,0/ 0 0 -ik Jo,0] 0o 0 ik|o,0/-ik 0 o] oO,0lk 0O O
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How we have to consider the integrals involved ind i’[ WE{ iy and
(ftwmli> . _We first consider the integral involved in (f! WEz i> o From

eqgs. (392) and (39b) and (6lc), we have

~h _ e S -Q
e Ky 1
whence X\=R ~-53v , %, = 2? (67a)
- > ~» == 1
. =R+ %—Y’ 3. = +§? (670)

R | ' ) -
As we have already done before, we separate the wave i‘unctlon?( *1, %o )

into a product of function of R and a function of ¥ i.ce.

G (%,%) =V @ «@) (68)
where U(.l?) satisfies eq. (4#a) and w(¥) satisfies eqe (Li5)e After this

substitution, eq. (65a) becomes

S E Y -
Er) 3¢ 22, 3 ik,
Ak g B 45y ¥ RE% (e Zn)- (b (™ "2()}

U @ 4 MR SF (69)

SLREVE

\

v

Since U, (R ) and U f(ﬁ’ ) satisfipe eq.(L#a), they can, thus, be written

as iPE
;@B = ;—;J___- LR N (70a)
e 1 %? .A ) P
VR ) = =5 Po =|2iES (70p)

il we normalize them in the same volume V. Considering the law of conserva-

tion of momentum

__’/ ‘.s, -
Pl =P +E% , (71a)
c ~ -~
ik s ¥
i = ik,
we find Uf*(R ) e ViR D)\ 1, (71b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



so that we get

-\ I‘
<f{wE|i> =iy ’2"7@[‘( fi(r)JQ 'H (T2 4q) u (27

N (72)
- (--1)'Q g“ ?g €3) ?kf'g (ei?'§+ l)‘l.l(?)d}zi]
Since the initial state is a3$state, we have
(V) =0T (73a)
while Meg () = (-1)" Uy (2) . (73b)

Substituting eqs. (73a) and (73b) into the first term in eq.(72) and chang-
ing in this term the integration variable from ? into (-'-?) » we see that

the twn integrals in eq.(72) are equal, so that we find simply

(leEl i = --ZL)M gmeay £g () 2ty i-' (eﬁ{’z +1)u (Y)d (7L)

So the average square of <f|’f.|’E( 1) is

KLl = zmed| [uh @ 3LE

S ]2

+1) ui<z~”>d3?ff , (15

vhich is eq.(1}) in section 2.
Now we consider the 1n'begrals invol ved in (i“ Wh (1} Proceeding in a
similar way as what we did for the integral in (£ )WE l:u), we can substitute

eq. (68) with egs. (70a) and (70b). We thus find

pl"

SEn
3% l

G| = _h’g«?;_‘?. ,fo\ ¢
' rI,

-7

«-’-u

PS‘)G'\Sr J:LAT’Q‘ j fﬁ (I‘)( 19‘ )‘{l \‘?)Q r}

or by egs. (73a) and (73b):

E?
N T s  ,
<i‘lw] 11> 5 )\Sfm.‘*s, -Ir I‘m(“)( )u\ (?)
where )\ (- ,) ]‘*', , C, e r.d’ , A
S ws"‘S)T w'p s R Sl ‘f,*\-r;l t:‘“““’sll Q"\.,.; R

Ve have seen before that we cannot trust magnetic multipole transitions
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. ) . L] > . - A
higner than the magnetic dipole itransition; that is ; use of 4 (0) is
just as good as use of H(§). This means replacing e “*T/¢ by 1., In that
case, the integral in eq.(76) simply vanishes by the orthogonality relation
-y ~5
for ui(r ) and W, (7). [From €q.(76), we find eq.(10) in section 2, if

we take the average over the two directions of polarization and over the

suostates of spin of the initial state and -sum

e sum over the substates of spin and isotopic spin
of the final state, and then use
2 .2 2 2
lAlAv“k [)*[5 *f\u 'f%("l)g}*(’/uﬂj (17
vhich follows from eq. (76a) by egs. (66a) and (66b). Thus, we find,indeed,
for ,Q: 0

(e ot o7l = 255 G nfe S

Xu;;frr‘) W @R ?,

which is eq.(10) in section 2.1 If yet we want to calculate the magnetic

quadrupole contribution, 'oping the best for the eq.(9) for M, we find from

eq.(76), by a Taylor's expansion of elk'r/2 :
alfe> = -j ety 2 Mol DS BT (772)
S n*‘s- "

F0r2= 0, we still find eq.(10) of section 2, this is, we find the vanishing

of the magnetic dipole cross-section. Forn =1, we find
[ 2rcti e 1 2w, . b
(= 1 lt= o =| 2EE £ L)F mm[f @ RR W @R, (1)

Substituting eq.(77) into the average square of eq.(77b), and performing

the integration over the angles after the substitution of eq.(46), we find

e s e ol = 7 253 ()" 000 S [ Fatomed”
1Tc
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Thence, (ccmpare eq.(8L) below),

=V i} 2 e 2 2,
Tm} G IAv‘ L= mﬁc Mcf @sz) K (o tPn ~32pHe)
o
L H; rfy (2)F, (r)dr 2 (779)

This is just the first member of eq.(29) in the section 2. Compare (77d)
with eq.(23) we easily obtain the last member of eq.(29).
low we are going to consider the matrix element for the clectric

quadrupole transition considered by MPller and Rosenfeld. They used for

it the perturbation (see eq.(27))

-.))
]_ ,_mz; —'ap lk.R 3>
fing,,q TS LR

\

jnfg Sy, 2 | el

+4 complex conj.
whereﬁg is the quantized wave function of the nucleon. Then the matrix

element of this for the electric quadrupole transition of the deuteron is

%0812\9.'?"1 t+Tan E( ) Rl[(x _R_,\ *-—-"ﬁmc(;?) k 1:(. ‘L_dBé d3_x )

1] w2 AN

Applying eqs. (67a) and (67b), we find, by Ta k2= 0 ,

IZfCﬁwZCSiL?*iY (% )5k; elk'Rffid3§’d3?

NS 1]

IZW\C’.;,? (l’-i) Q}'? ( )(lko—) lk RCF 3‘5 3—’>

Bl
ATter the integration over R, and by the argument similar to that used for

the transition (II), we find that the abuve cxpression reduces to

Mﬂ(iw) _-%.i (x"r) (T{.r)u 7.

So the average square of this is given by

2
3‘1@%‘}_%3 2()<k§’)<k.-)u<*)d3?; (76)

Fq.(78) is the contribution for the second term in a Taylor's expansion of
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the factor eik'Z in the integrand appearing in the second member of eq.(25)
2s stated in sectlion 2. (Wote that the first term in this Taylor's expan=—
sion contributes nothing to the integral.) In fact, we used in the third
member of eq.(25) not a Taylor's expansion, but the expansion (15). How-
ever, from the expansion (16b), we see that the tennﬂfz 1 contributes the
same 28 eqs (78), if we neglect terms of dimension of higher multipole
contribution,

Finally, we shall derive egq.(21) in section 2, and the expression
for the cross-section. The cross—-section for the photo-disintegration of
the deuteron can be easily found from the probability per sec. of the
transition from the ground state of the deuteron to its disintegrated state,
given by eg.(1l), through the relation

5= _Probability of transition / sec. (N

" no. of incident photons /cm“-sec. incident flux

(79)

Since the photon field is enclosed in a volume V, and there is only one
incident photon, the number of incident photon per unit volume should be 1/v.
The incident flux is then given by C/V, because the incident photon moves
with velocity €+ According to eq.(79) and eq.(l), the cross-section is
given by

ez Lwa L 2 [y P @) (80

2
ie have already found the expression for lWi AV ° Now we must find the

expression forf’(E) in order to get the complete expression of the cross-
section,

The density f (E) of final states of the deuteron per unit change of
energy can be easily obtained from the boundary conditions of the spatial

wave function of the final state of the deuteron. As we have already

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bt nml




r i ._:g‘ 38
i nenvioned before, the spatial wave function is normalized in a spherical

volune V of very large radius &, qu(r) must satisfy the boundary condi-

tions that

Foolr) =0 %“ Y=L (81)
From eqs.(81) and (58c), it follows that

c{fi*—‘.'z- Q-§ = fa+ %)n‘ s
or o{foi = T+ const,

Thence by eq.(57b)

h= =L -__-_f__‘h‘m + const. (82)

The density of final states per unit change of energy is then

- dnw -1 [w

.

which is the expression of eq.(2l). With this expression for F (E), the

cross-section, given by eq.(80), can be written as

- V2nu 2 3 M
=5 v gy 5 d

Ei“ d (84)

. SN

. . . f 2
Substituting the different expressions of !W l AV for different transitions
into eq.(8L), we then get all the expressions for the cross-sections

appearing in the text.
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